No sliding in time
نویسندگان
چکیده
In this letter, we analyse the following apparent paradox: as has been recently proved by Hastings (2004 Phys. Rev. 69 104431), under a general set of conditions, if a local Hamiltonian has a spectral gap above its (unique) ground state (GS), all connected equal-time correlation functions of local operators decay exponentially with distance. On the other hand, statistical mechanics provides us with examples of 3D models displaying so-called sliding phases (O’Hern et al 1999 Phys. Rev. Lett. 83 2745) which are characterized by the algebraic decay of correlations within 2D layers and exponential decay in the third direction. Interpreting this third direction as time would imply a gap in the corresponding (2+1)D quantum Hamiltonian which would seemingly contradict Hastings’ theorem. The resolution of this paradox lies in the nonlocality of such a quantum Hamiltonian. PACS numbers: 05.30.−d, 73.43.Nq
منابع مشابه
Second Order Sliding Mode Control With Finite Time Convergence
In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed algorithm which is able to control nonlinear systems with matched structured u...
متن کاملTerminal Sliding Mode Control for Nonlinear Systems with both Matched and Unmatched Uncertainties
In this paper, we extend the sliding mode idea to a class of unmatched uncertain variable structure systems. This method is achieved with introducing a new terminal sliding variable and the finite time stability of proposed method is proved using a new particular finite time condition in both reaching and sliding phases. In reaching phase new sliding mode controller is derived to guarantee the ...
متن کاملA Novel Approach to Designing of Chattering-Free Sliding-Mode Control in Second-Order Discrete-Time Systems
In this paper, a chattering-free sliding-mode control is mainly proposed in a second-order discrete-time system. For achieving this purpose, firstly, a suitable control law would be derived by using the discrete-time Lyapunov stability theory and the sliding-mode concept. Then the input constraint is taken into account as a saturation function in the proposed control law. In order to guarantee ...
متن کاملSystematic Approach to Design a Finite Time Convergent Differentiator in Second Order Sliding Mode Controller
This paper presents a systematic approach to design a Lyapunov based super twisting differentiator. The differentiator will be shown convergent in a finite time whilst the relevant time is accurately estimated. This differentiator is the main part to establish the sliding surface in higher order sliding mode. The differentiator is used in the prescribed control structure to regulate pressure...
متن کاملQuaternion-based Finite-time Sliding Mode Controller Design for Attitude Tracking of a Rigid Spacecraft during High-thrust Orbital Maneuver in the Presence of Disturbance Torques
In this paper, a quaternion-based finite-time sliding mode attitude controller is designed for a spacecraft performing high-thrust orbital maneuvers, with cold gas thrusters as its actuators. The proposed controller results are compared with those of a quaternion feedback controller developed for the linearized spacecraft dynamics, in terms of settling time, steady-state error, number of thrust...
متن کاملGlobal Finite Time Synchronization of Two Nonlinear Chaotic Gyros Using High Order Sliding Mode Control
In this paper, under the existence of system uncertainties, external disturbances, and input nonlinearity, global finite time synchronization between two identical attractors which belong to a class of second-order chaotic nonlinear gyros are achieved by considering a method of continuous smooth second-order sliding mode control (HOAMSC). It is proved that the proposed controller is robust to m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005